

# **THE UNIVERSITY** Stretch Differentially Affects Ventricular Epicardial and Endocardial **Action Potential Duration in the Rat**

Douglas R Kelly, Lorraine Mackenzie and David A Saint Discipline of Physiology, School Of Molecular & Biomedical Sciences, The University of Adelaide

## INTRODUCTION

TREK-1 (KCNK2 or K<sub>2P</sub>2.1) is a mechano-sensitive member of the 4T2P (4 transmembrane domain 2 pore) family of K<sup>+</sup> channels. Previously we showed by real time PCR that TREK-1 is differentially expressed in left ventricular epicardial and endocardial regions of the rat heart and hypothesised that it may play a role in dispersion of repolarisation.

### AIM

In these experiments we aimed to determine the transmural effect of stretch on monophasic action potential (MAP) duration.



# MATERIALS AND METHODS Contd

#### VENTRICULAR MONOPHASIC ACTION POTENTIAL RECORDINGS:

MAP recordings were made via transmural electrodes consisting of stainless steel acupuncture needles (0.3mm in diameter, Brand, Aust.) insulated (except for the tip) relative to an indifferent (small AqCI ball ~1mm in diameter) placed on the surface of the heart Figure 2. Following each stepwise change in diastolic pressure, the MAP electrode was reinserted and held against the heart using a micromanipulator. MAP electrograms were amplified, digitised at a rate of 2 kHz, displayed and analysed using Chart V and peak parameter software (ADInstruments, Australia) Figure 3. Action potential durations at 20, 50 and 80% repolarisation were calculated.



Figure 2

The MAP recording electrodes against the thickness of the left ventricular free wall of the rat heart.

### **RESULTS & STATISTICAL ANALYSES**

Action potential durations at 20, 50 and 80% repolarisation were analysed using general linear model analysis of variance (GLM-ANOVA) followed post hoc by Tukey's pair-wise comparisons.

 APDs did not differ between no stretch and moderate stretch for APD<sub>20</sub> and APD<sub>80</sub> (p=0.09 and 0.35 respectively) however at APD<sub>50</sub> during moderate stretch were significantly shorter than control (no stretch) Figure 4.

 Expressed relative to control levels elevated stretch generated action potentials that were significantly shorter for both epi- and endocardium APD<sub>50</sub>: 92% and 69%, APD<sub>80</sub>: 85% and 58% respectively Figure 5.

• The shortening was significantly greater for endocardium (p<0.001 and p<0.001 for APD<sub>50</sub> and APD<sub>80</sub> respectively).



# **RESULTS & STATISTICAL ANALYSES** contd.



Figure 4: shows the relationships between epicardial and endocardial under conditions of no stretch, moderate stretch and elevated stretch at 50 and 80% repolarisation.



Figure 5: shows the relationship between epicardial and endocardial at 20, 50 and 80% repolarisation relative to control under conditions of moderate stretch and elevated stretch. Horizontal dotted line represents control, no stretch.

# CONCLUSION

These results provide support for stretch activated channels being differentially distributed in epicardium and endocardium. The further suggest a potential role for these channels in inducing compensatory changes following altered haemodynamics in the heart.

#### References

Tan JH, Liu W and Saint DA. Differential expression of the mechanosensitive potassium channel TREK-1 in epicardial and endocardial myocytes in rat ventricle. (2004) Exp Physiol. 89(3):237-42.

iource of Research Support: Australian NHMRC Peter Doherty Postdoctoral Fellowship, Grant ID: 250475

Figure 3

# MATERIALS AND METHODS

#### LANGENDORFF PERFUSION:

Seven male Sprague-Dawley rats (466  $\pm$  7 g) were anaesthetized (i.p., Ketamine hydrochloride (75 mg/kg), medatomadine hydrochloride (0.5 mg/kg) and the hearts rapidly excised into ice cold HEPES buffer. Hearts were cannulated on an 18 gauge needle and retrogradely perfused at a constant perfusion pressure of 60 mmHg with bicarbonate buffered solution. Hearts were paced through the right atrium at twice threshold (5 Hz) with 1ms bipolar pulses. A fluid-filled latex balloon was introduced into the left ventricle through the incised left atrium. Left ventricular diastolic and systolic pressure from which left ventricular dP/dt was continuously derived via a pressure transducer. Following stabilization and baseline recordings, the balloon was inflated from baseline (0-5 mm.Hg; no stretch) with water until the desired diastolic pressures were obtained (20-25 mm.Hg; moderate stretch and 50-55 mm.Hg; elevated stretch)

### SOLUTION DETAILS

BICARBONATE PERFUSATE was equilibrated with 95% O2 and 5% CO2 and consisted of (in mmol/L) CaCl, 1.5, NaCl 111.0, KCl 4.0, MgCl, 0.6, NaHCO<sub>2</sub> 23.9, NaH<sub>2</sub>PO<sub>4</sub> 1.2, D-glucose 12.0 at 37°C

Hepes Buffer contained (in mmol/L) NaCl 133.5, NaH2PO4 1.2, KCl 4, HEPES 10.0, MgCl2 1.2, and D-glucose 11 (pH 7.4 0 with NaOH).